metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shuang-Quan Zang,^a Yang Su^b and Ruo-Jie Tao^a*

^aSchool of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, People's Republic of China, and ^bCoordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: rjtao@henu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.044 wR factor = 0.086 Data-to-parameter ratio = 16.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N-(4-Nitrobenzyl)quinolinium bis(2-thioxo-1,3-dithiole-4,5-dithiolato)palladium(III) acetone solvate

In the title ion-pair compound, $(C_{16}H_{13}N_2O_2)[Pd(C_3S_5)_2]$ - C_3H_6O , the Pd^{III} atom exhibits square-planar coordination geometry involving four S atoms of two 2-thioxo-1,3-dithiole-4,5-dithiolate (dmit) ligands. Some weak S···S interactions and hydrogen bonds are found, resulting in a three-dimensional supramolecular network structure.

Comment

Extensive research has been focused on the syntheses and characterization of bis-dithiolate metal complexes and their analogs due to their properties and potential applications, for example as conducting/magnetic materials and in non-linear optics (NLO) (Cassoux, 1999). Among these, 2-thioxo-1,3-dithiole-4,5-dithiolate (dmit) metal complexes are well known as molecular conductors. Ni^{III} complexes are commonly employed in those studies, but Pd^{III} complexes are not. In order to extend this knowledge to the Pd^{III} analogs, the title compound, (I), was synthesized.

The crystal structure of (I) shows that there are three separate components in the structure (Fig. 1), namely the $[Pd^{III}(dmit)_2]^-$ anion, the *N*-(4-nitrobenzyl)quinolinium cation and the acetone solvent molecule. The Pd^{III} ion adopts square-planar coordination involving the four S atoms of two dmit ligands [Pd-S = 2.2693 (10)-2.2757 (11) Å]. The $[Pd^{III}(dmit)_2]^-$ anion plane is almost parallel to the quinoline ring system [dihedral angle = 7.6 (1)°]. Weak π - π interactions exist in the crystal structure; the centroid-to-centroid distance between the C10–C15 and Pd1/S8/S9/C5/C6 rings is 3.6592 (2) Å, while the interplanar distance is 3.578 (2) Å.

The anions are dimerized through inter-anion $S \cdots S$ weak interactions $[S8 \cdots S8^i = 3.538 (2) \text{ Å}; \text{ symmetry code: (i) } -x, -y, -z]$. The three components are stacked in separate columns (Fig. 2); these columns are interlinked through some

Received 29 March 2006 Accepted 3 April 2006

© 2006 International Union of Crystallography All rights reserved

 $D_r = 1.734 \text{ Mg m}^{-3}$

 $0.3 \times 0.2 \times 0.2$ mm

16294 measured reflections

6128 independent reflections

 $w = 1/[\sigma^2(F_0^2) + (0.0376P)^2]$

+ 0.1449P] where $P = (F_0^2 + 2F_c^2)/3$

 $\begin{array}{l} (\Delta/\sigma)_{\rm max} = 0.002 \\ \Delta\rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.64 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

4753 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 1.28 \text{ mm}^{-1}$

T = 293 (2) K

Block, black

 $R_{\rm int} = 0.028$

 $\theta_{\rm max} = 26.0^{\circ}$

Z = 4

Figure 1

The asymmetric unit of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by spheres of arbitrary radii.

Figure 2

The packing of (I), viewed along the b axis. Dashed lines indicate the hydrogen-bonding interactions. H atoms not involved in hydrogen bonding have been omitted for clarity.

hydrogen bonds (Table 1) into a three-dimensional supramolecular network.

Experimental

4,5-Bis(thiobenzoyl)-1,3-dithiole-2-thione (812 mg, 2.0 mmol) (Wang *et al.*, 1998) was suspended in dry methanol (20 ml). Under nitrogen, sodium (92 mg, 4.0 mmol) was added to the above mixture at room temperature to give a bright red solution. To this solution, PdCl₂ (177 mg, 1 mmol) was added. After 20 min, a solution of I₂ (127 mg, 0.5 mmol) was added, and after another 20 min, a solution of *N*-(4-nitrobenzyl)quinolinium bromide (2 mmol, 0.380 g) (Bulgarevich *et al.*, 1994) in methanol was added to the reaction mixture, and the solution was stirred further for 30 min. The resulting powder was collected by filtration. Evaporation of a dilute acetone solution of this powder sample at room temperature gave single crystals of (I) in 1–2 weeks.

Crystal data

 $\begin{array}{l} (C_{16}H_{13}N_2O_2)[Pd(C_3S_5)_2]\cdot C_3H_6O\\ M_r = 822.54\\ Monoclinic, P2_1/c\\ a = 12.224 \ (2) \ \text{\AA}\\ b = 8.0880 \ (16) \ \text{\AA}\\ c = 32.711 \ (6) \ \text{\AA}\\ \beta = 103.015 \ (6)^\circ\\ V = 3151.0 \ (10) \ \text{\AA}^3 \end{array}$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2000)

 $T_{\min} = 0.745, T_{\max} = 0.778$

Refinement

Refinement on F^2	
$R[F^2 > 2\sigma(F^2)] = 0.044$	
$wR(F^2) = 0.087$	
S = 1.13	
6128 reflections	
372 parameters	
H-atom parameters constrained	

Table 1				
Undrogon	hand	acomoter	(Å	0)

Hydrogen-bond	geometry	(A,	°)
---------------	----------	-----	----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C22-H22···O3 ⁱ	0.93	2.56	3.409 (5)	152
C7-H7···O1 ⁱⁱ	0.93	2.35	3.226 (4)	157

Symmetry codes: (i) x, y - 1, z; (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

All H atoms were positioned geometrically (C-H = 0.93–0.97 Å) and refined as riding on their parent atoms, with $U_{iso}(H) = 1.2$ or 1.5 times $U_{eq}(C)$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXL97*.

The authors express their thanks to the Natural Science Foundation of Henan Province for financial support.

References

Bruker (2000). SADABS, SMART (Version 5.625), SAINT (Version 6.02) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.

- Bulgarevich, S. B., Bern, D. V., Movshovic, D. Y., Finocchiaro, P. & Failla, S. (1994). J. Mol. Struct. 317, 147–155.
- Cassoux, P. (1999). Coord. Chem. Rev. 185-186, 213-232.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wang, C. S., Batsanov, A. S., Bryce, M. R. & Howard, J. A. K. (1998). Synthesis, pp. 1615–1618.